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Abstract

The paper introduces some generalizations of Vapnik’s method of structural risk min-
imisation (SRM). As well as making explicit some of the details on SRM, it provides a
result that allows one to trade off errors on the training sample against improved general-
ization performance. It then considers the more general case when the hierarchy of classes
is chosen in response to the data. A result is presented on the generalization performance
of classifiers with a “large margin”. This theoretically explains the impressive generaliza-
tion performance of the maximal margin hyperplane algorithm of Vapnik and co-workers
(which is the basis for their support vector machines). The paper concludes with a more
general result in terms of “luckiness” functions, which provides a quite general way for ex-
ploiting serendipitous simplicity in observed data to obtain better prediction accuracy from
small training sets. Four examples are given of such functions, including the VC dimension
measured on the sample.
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1 Introduction

The standard Probably Approximately Correct (PAC) model of learning considers a fixed hy-
pothesis classH together with a required accuracy� and confidence� � �. The theory char-
acterises when a target function fromH can be learned from examples in terms of the Vapnik-
Chervonenkis dimension, a measure of the flexibility of the classH and specifies sample sizes
required to deliver the required accuracy with the allowed confidence.

In many cases of practical interest the precise class containing the target function to be learned
may not be known in advance. The learner may only be given a hierarchy of classes

H� � H� � � � � � Hd � � � �
and be told that the target will lie in one of the setsHd.

Structural Risk Minimization (SRM) copes with this problem by minimizing an upper bound on
the expected risk, over each of the hypothesis classes. The principle is a curious one in that in
order to have analgorithm it is necessary to have a good theoretical bound on the generalization
performance. A formal statement of the method is given in the next section.

Linial, Mansour and Rivest [29] studied learning in a framework as above by allowing the
learner to seek a consistent hypothesis in each subclassHd in turn, drawing enough extra ex-
amples at each stage to ensure the correct level of accuracy and confidence should a consistent
hypothesis be found.

This paper� addresses two shortcomings of Linialet al.’s approach. The first is the requirement
to draw extra examples when seeking in a richer class. It may be unrealistic to assume that
examples can be obtained cheaply, and at the same time it would be foolish not to use as many
examples as are available from the start. Hence, we suppose that a fixed number of examples
is allowed and that the aim of the learner is to bound the expected generalization error with
high confidence. The second drawback of the Linialet al. approach is that it is not clear how it
can be adapted to handle the case where errors are allowed on the training set. In this situation
there is a need to trade off the number of errors with the complexity of the class, since taking
a class which is too complex can result in a worse generalization error (with a fixed number of
examples) than allowing some extra errors in a more restricted class.

The model we consider allows a precise bound on the error arising in different classes and hence
a reliable way of applying the structural risk minimisation principle introduced by Vapnik [48,
50]. Indeed, the results reported in Sections 2 and 3 of this paper are implicit in the cited
references, but our treatment serves to introduce the main results of the paper in later sections,
and we make explicit some of the assumptions implicit in the presentations in [48, 50]. A more
recent paper by Lugosi and Zeger [38] considers standard SRM and provides bounds for the
true error of the hypothesis with lowest empirical error in each class. Whereas our Theorem 2.3
gives an error bound that decreases to twice the empirical error roughly linearly with the ratio

�Some of the results of this paper appeared in [43].
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of the VC dimension to the number of examples, they give an error bound that decreases to the
empirical error itself, but as the square root of this ratio.

From Section 4 onwards we address a shortcoming of the SRM method which Vapnik [48, page
161] highlights:according to the SRM principle the structure has to be defined a priori before
the training data appear. An algorithm using maximally separating hyperplanes proposed by
Vapnik [46] and co-workers [14, 16] violates this principle in that the hierarchy defined depends
on the data. In Section 4 we prove a result which shows that if one achieves correct classification
of some training data with a class off�� �g-valued functions which are thresholded, and if the
values of the real-valued functions on the training points are all well away from zero, then there
is a bound on the generalization error which can be much better than the one obtained from the
VC-dimension of the thresholded class. In Section 5 we apply this to the case considered by
Vapnik: separating hyperplanes with a large margin.

In Section 6 we introduce a more general framework which allows a rather large class of meth-
ods of measuring the luckiness of a sample, in the sense that the large margin is “lucky”. In
Section 7 we explictly show how Vapnik’s maximum margin hyperplanes fit into this general
framework, which then also allows the radius of the set of points to be estimated from the
data. In addition, we show that the function which measures the VC dimension of the set of
hypotheses on the sample points is a valid (un)luckiness function. This leads to a bound on the
generalization performance in terms of this measured dimension rather than the “worst case”
bound which involves the VC dimension of the set of hypotheses over the whole input space.

Our approach can be interpreted as a general way of encoding our bias, or prior assumptions, and
possibly taking advantage of them if they happen to be correct. In the case of the fixed hierarchy,
we expect the target (or a close approximation to it) to be in a classHd with smalld. In the
maximal separation case, we expect the target to be consistent with some classifying hyperplane
that has a large separation from the examples. This corresponds to a collusion between the
probability distribution and the target concept, which would be impossible to exploit in the
standard PAC distribution independent framework. If these assumptions happen to be correct
for the training data, we can be confident we have an accurate hypothesis from a small data set
(at the expense of some small penalty if they are incorrect).

A commonly studied related problem is that ofmodel order selection (see for example [34]),
and we here briefly make some remarks on the relationship with the work presented in this pa-
per. Assuming the above hierarchy of hypothesis classes, the aim there is to identify the best
class index. Often “best” in this literature simply means “correct” in the sense that if in fact
the target hypothesish � Hi, then as the sample size grows to infinity, the selection procedure
will (in some probabilistic sense) picki. Other methods of “complexity regularization” can be
seen to also solve similar problems. (See for example [20, 6, 7, 8].) We are not aware of any
methods (apart from SRM) for which explicit finite sample size bounds on their performance
are available. Furthermore, with the exception of the methods discussed in [8], all such meth-
ods take the form of minimizing a cost function comprising an empirical risk plus an additive
complexity term which does not depend on the data.

We denote logarithms to base 2 by log, and natural logarithms by ln. IfS is a set,jSj denotes
its cardinality. We do not explictly state the measurability conditions needed for our arguments
to hold. We assume with no further discussion “permissibility” of the function classes involved
(see Appendix C of [41] and section 2.3 of [45]).
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2 Standard Structural Risk Minimisation

As an initial example we consider a hierarchy of classes

H� � H� � � � � � Hd � � � �

whereHi � f�� �gX for some input spaceX, and where we will assume VCdim�Hd� � d for
the rest of this section. (Recall that the VC-dimension of a class off�� �g-valued functions is the
size of the largest subset of their domain for which the restriction of the class to that subset is the
set of allf�� �g-valued functions; see [49].) Such a hierarchy of classes is called a decomposable
concept class by Linialet al. [29]. Related work is presented by Benedek and Itai [12]. We will
assume that a fixed numberm of labelled examples are given as a vectorz � �x� t�x�� to the
learner, wherex � �x�� � � � � xm�, andt�x� � �t�x��� � � � � t�xm��, and that the target functiont
lies in one of the subclassesHd. The learner uses an algorithm to find a value ofdwhich contains
an hypothesish that is consistent with the samplez. What we require is a function��m� d� ��
which will give the learner an upper bound on the generalization error ofh with confidence
�� �. The following theorem gives a suitable function. We use Erz�h� � jfi � h�xi� �� t�xi�gj
to denote thenumber of errors thath makes onz, and erP �h� � Pfx� h�x� �� t�x�g to denote
theexpected error whenx�� � � � � xm are drawn independently according toP . In what follows
we will often write Erx�h� (rather than Erz�h�) when the targett is obvious from the context.
The following theorem, which appears in [43], covers the case where there are no errors on the
training set. It is a well-known result which we quote for completeness.

Theorem 2.1 [43] Let Hi, i � �� �� � � � be a sequence of hypothesis classes mapping X to
f�� �g such that VCdim�Hi� � i, and let P be a probability distribution on X . Let pd be any
set of positive numbers satisfying

P�
d�� pd � �� With probability � � � over m independent

examples drawn according to P , for any d for which a learner finds a consistent hypothesis h
in Hd, the generalization error of h is bounded from above by

��m� d� �� �
�

m

�
d ln

�
�em

d

�
� ln

�
�

pd

�
� ln

�
�

�

��
�

provided d � m.

The role of the numberspd may seem a little counter-intuitive as we appear to be able to bias our
estimate by adjusting these parameters. The numbers must, however, be specified in advance
and represent some apportionment of our confidence to the different points where failure might
occur. In this sense they should be one of the arguments of the function��m� d� ��. We have
deliberately omitted this dependence as they have a different status in the learning framework. It
is helpful to think ofpd as our prior estimate of the probability that the smallest class containing
a consistent hypothesis isHd. In particular we can setpd � � for d � m, since we would expect
to be able to find a consistent hypothesis inHm and if we fail the bound will not be useful for
such larged in any case.

We also wish to consider the possibility of errors on the training sample. The result presented
here is analagous to those obtained by Lugosi and Zeger [37] in the statistical framework.

We will make use of the following result of Vapnik in a slightly improved version due to An-
thony and Shawe-Taylor [4]. Note also that the result is expressed in terms of the quantity
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Erz�h� which denotes the number of errors of the hypothesish on the samplez, rather than the
usual proportion of errors.

Theorem 2.2 ([4]) Let � � � � � and � � � � �. Suppose H is an hypothesis space of
functions from an input space X to f�� �g, and let � be any probability measure on S � X �
f�� �g. Then the probability (with respect to �m) that for z � Sm, there is some h � H such
that

er��h� � � and Erz�h� � m��� ��er��h�

is at most

�	H��m� exp

�
����m

�

�
�

Our aim will be to use a double stratification of�; as before by class (viapd), and also by the
number of errors on the sample (viaqdk). The generalization error will be given as a function
of the size of the samplem, index of the classd, the number of errors on the samplek, and the
confidence�.

Theorem 2.3 Let Hi, i � �� �� � � �, be a sequence of hypothesis classes mapping X to f�� �g
and having VC-dimension i. Let � be any probability measure on S � X � f�� �g, and let
pd� qdk be any sets of positive numbers satisfying

�X
d��

pd � ��

and
Pm

k�� qdk � � for all d. Then with probability � � � over m independent identically
distributed examples x, if the learner finds an hypothesis h in Hd with Erx�h� � k, then the
generalization error of h is bounded from above by

��m� d� k� �� �
�

m

�
�k � � ln

�
�

pdqdk�

�
� �d ln

�
�em

d

��
�

provided d � m.

Proof : We bound the required probability of failure

�mfz � �d� k� �h � Hd�Erz�h� � k� er��h� � ��m� d� k� ��g � ��

by showing that for alld andk

�mfz � �h � Hd�Erz�h� � k� er��h� � ��m� d� k� ��g � �pdqdk�

We will apply Theorem 2.2 once for each value ofk andd. We must therefore ensure that only
one value of� � �dk is used in each case. An appropriate value is

�dk � �� k

m��m� d� k� ��
�
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This ensures that if er��h� � ��m� d� k� �� and Erz�h� � k, then

Erz�h� � k � m��� �dk���m� d� k� �� � m��� �dk�er��h��

as required for an application of the theorem. Hence, ifm 	 d Sauer’s lemma implies

�mfz � �h � Hd�Erz�h� � k� er��h� � ��m� d� k� ��g � �pdqdk


 �

�
�em

d

�d

exp

����dk��m� d� k� ��m

�

�
� �pdqdk


 d ln

�
�em

d

�
� ln

�
�

pdqdk�

�
� ��m� d� k� ��m

�
�

�k

�
� �


 ��m� d� k� �� �
�

m

�
�k � � ln

�
�

pdqdk�

�
� �d ln

�
�em

d

��
�

ignoring one term ofk����m��. The result follows.

The choice of the priorqdk for different k will again affect the resulting trade-off between
complexity and accuracy. In view of our expectation that the penalty term for choosing a large
class is probably an overestimate, it seems reasonable to give a correspondingly large penalty
for a large numbers of errors. One possibility is an exponentially decreasing prior distribution
such as

qdk � ���k����

though the rate of decrease could also be varied between classes. Assuming the above choice,
observe that an incremental search for the optimal value ofd would stop when the reduction in
the number of classification errors in the next class was less than

��
� ln

�
�em

d

�
�

Note that the tradeoff between errors on the sample and generalization error is also discussed in
[16].

3 Classifiers with a Large Margin

The standard methods of structural risk minimization require that the decomposition of the
hypothesis class be chosen in advance of seeing the data. In this section we introduce our first
variant of SRM which effectively makes a decomposition after the data has been seen. The
main tool we use is the fat-shattering dimension, which was introduced in [26], and has been
used for several problems in learning since [1, 11, 2, 10]. We show that if a classifier correctly
classifies a training set with a large margin, and if its fat-shattering function at a scale related
to this margin is small, then the generalization error will be small. (This is formally stated in
Theorem 3.9 below.)

Definition 3.1 Let F be a set of real valued functions. We say that a set of points X is �-
shattered byF if there are real numbers rx indexed by x � X such that for all binary vectors b
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indexed by X , there is a function fb � F satisfying

fb�x�

� 	 rx � � if bx � �
� rx � � otherwise�

The fat shattering dimension fatF of the set F is a function from the positive real numbers to the
integers which maps a value � to the size of the largest �-shattered set, if this is finite or infinity
otherwise.

Let T� denote the threshold function at	, T��R � f�� �g, T��
� � � iff 
 � 	. Fix a class of
��� ��-valued functions. We can interpret each functionf in the class as a classification function
by considering the thresholded version,T��� � f . The following result implies that, if a real-
valued function in the class maps all training examples to the correct side of��� by a large
margin, the misclassification probability of the thresholded version of the function depends on
the fat-shattering dimension of the class, at a scale related to the margin. This result is a special
case of Corollary 6 in [2], which applied more generally to arbitrary real-valued target functions.
(This application to classification problems was not described in [2].)

Theorem 3.2 Let H be a set of ��� ��-valued functions defined on a set X . Let � � � � ���.
There is a positive constant K such that, for any function t � X � f�� �g and any probability
distribution P on X , with probability at least � � � over a sequence x�� � � � � xm of examples
chosen independently according to P , every h in H that has

jh�xi�� t�xi�j � ���� �

for i � �� � � � � m satisfies
Pr �jh�x�� t�x�j 	 ���� � ��

provided that

m 	 K

�

�
log

�

�
� d log�

�
d

��

��
�

where d � fatH���
�.

Clearly, this implies that the misclassification probability is less than� under the conditions of
the theorem, sinceT����h�x�� �� t�x� implies jh�x� � t�x�j 	 ���. In the remainder of this
section, we present an improvement of this result. By taking advantage of the fact that the
target values fall in the finite setf�� �g, and the fact that only the behaviour near the threshold
of functions inH is important, we can remove thed�� factor from thelog� factor in the bound.
We also improve the constants that would be obtained from the argument used in the proof of
Theorem 3.2.

Before we can quote the next lemma, we need another definition.

Definition 3.3 Let �X� d� be a (pseudo-) metric space, let A be a subset of X and � � �. A set
B � X is an �-coverfor A if, for every a � A, there exists b � B such that d�a� b� � �. The
�-covering numberof A, Nd��� A�, is the minimal cardinality of an �-cover for A (if there is no
such finite cover then it is defined to be 
).
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The idea is thatB should be finite but approximate all ofA with respect to the pseudometric
d. As in [2], we will use thel� distance over a finite samplex � �x�� � � � � xm� for the pseudo-
metric in the space of functions,

dx�f� g� � max
i
jf�xi�� g�xi�j�

We writeN ���F �x� for the�-covering number ofF with respect to the pseudo-metricdx.

We now quote a lemma from Alonet al. [1] which we will use below.

Lemma 3.4 (Alon et al. [1]) Let F be a class of functions X � ��� �� and P a distribution
over X . Choose � � � � � and let d � fatF �����. Then

E �N ���F �x�� � �

�
�m

��

�d log��em��d���

�

where the expectation E is taken w.r.t. a sample x � Xm drawn according to Pm.

Corollary 3.5 Let F be a class of functions X � �a� b� and P a distribution over X . Choose
� � � � � and let d � fatF�����. Then

E �N ���F �x�� � �

�
�m�b� a��

��

�d log��em�b�a���d���

�

where the expectation E is over samples x � Xm drawn according to Pm.

Proof : We first scale all the functions inF by the affine transformation mapping the interval
�a� b� to ��� �� to create the set of functionsF �. Clearly, fatF ���� � fatF���b � a��, while
E�N ���F �x�� � E�N ����b� a��F ��x��� The result follows.

In order to motivate the next lemma we first introduce some notation we will use when we
come to apply it. The aim is to transform the problem of observing a large margin into one
of observing the maximal value taken by a set of functions. We do this by ‘folding’ over the
functions at the threshold. The following hat operator implements the folding.

We define the mapping
�RX � R
X�f���g by


� f �� 
f�x� c� � f�x���� c� � ��	 � f�x��c�

for some fixed real	. For a set of functionsF , we define
F � 
F� � f 
f � f � Fg. The
idea behind this mapping is that for a functionf , the corresponding
f maps the inputx and it
classificationc to an output value, which will be less than	 provided the classification obtained
by thresholdingf�x� at 	 is correct.

Lemma 3.6 Suppose F is a set of functions that map from X to R with finite fat-shattering
dimension bounded by the function afat � R � N which is continuous from the right. Then for
any distribution P on X , and any k � N and any 	 � R

P �m

�
xy� �f � F � r � max

j
ff�xj�g� �� � 	 � r� afat����� � k�

�

m
jfi � f�yi� 	 r � ��gj � ��m� k� ��

�
� ��

where ��m� k� �� � �
m
�k log �em

k
log���m� � log �

�
�.
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Proof : Using the standard permutation argument (as in [49]), we may fix a sequencexy and
bound the probability under the uniform distribution on swapping permutations that the per-
muted sequence satisfies the condition stated. Let�k � minf��� afat������ � kg. Notice that
the minimum is defined since afat is continuous from the right, and also that afat��k��� �
afat�����. For any� satisfying afat����� � k, we have�k � �, so the probability above is no
greater than

P �m

�
xy � �� � R

� � afat����� � k� �f � F � Af���k�

�
�

whereAf ��� is the event thatf�yi� 	 maxjff�xj�g� � for at leastm��m� k� �� pointsyi in y.
Note thatr � �� � 	. Let

��
� ��

��
�

	 if 
 � 	
	 � ��k if 
 � 	 � ��k

 otherwise,

and let��F� � f��f�� f � Fg. Consider a minimal�k-coverBxy of ��F� in the pseudo-
metricdxy. We have that for anyf � F , there exists�f � Bxy, with j��f��x���� �f��x�j � �k
for all x � xy. Thus since for allx � x, by the definition ofr, f�x� � r � 	 � ��, ��f��x� �
	���k � r������k�, and so�� �f��x� � r�����k. However there are at leastm��m� k� ��
pointsy � y such thatf�y� 	 	 � r���, so�� �f��y� � r�����k � maxjf�� �f��xj�g. Since
� only reduces separation between output values, we conclude that the eventA�f ��� occurs. By

the permutation argument, for fixed�f at most����m�k���m of the sequences obtained by swapping
corresponding points satisfy the conditions, since the�m points with the largest�f values must
remain on the right hand side forA �f��� to occur. Thus by the union bound

P �m

�
xy � �� � R

� � afat����� � k� �f � F � Af���k�

�
� E�jBxyj�����m�k���m�

where the expectation is overxy drawn according toP�m. Now for all � � �, fat��F���� �
fatF��� since every set of points�-shattered by��F� can be�-shattered byF . Furthermore,
��F� is a class of functions mapping a setX to the interval�	���k� 	�. Hence, by Corollary 3.5
(setting�a� b� to �	 � ��k� 	�, � to �k, andm to �m),

E�jBxyj� � E�N ��k� ��F��xy�� � �

�

m�	 � 	 � ��k�

�

��k

�d log�	em���k���d�k��

�

whered � fat��F���k��� � fatF��k��� � k. Thus

E�jBxyj� � ����m�k log��em�k��

and soE�jBxyj�����m�k���m � � provided

��m� k� �� 	 �
m

�
k log�
em�k� log���m� � log �

�

	
�

as required.
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The function afat��� is used in this theorem rather than fatF ��� since we used the continuity
property to ensure that afat��k��� � k for everyk, while we cannot assume that fatF��� is
continuous from the right. We could avoid this requirement and give an error estimate directly
in terms of fatF instead of afat, but this would introduce a worse constant in the argument of
fatF . Since in practice one works with continuous upper bounds on fatF��� (e.g.c���) by taking
the floor of the value, the critical question becomes whether the bound is strict rather than less
than or equal. Provided fatF is strictly less than the continuous bound the corresponding floor
function is continuous from the right. If not addition of an arbitrarily small constant to the
continuous function will allow substitution of a strict inequality.

Lemma 3.7 Let F be a set of real valued functions from X to R. Then for all � 	 �,

fat 
F��� � fatF����

Proof : For anyc � f�� �gm, we have thatfb realises dichotomyb onx � �x�� � � � � xm� with
margin� about output valuesri if and only if 
fb realises dichotomyb� c on


x � ��x�� c��� � � � � �xm� cm���

with margin� about output values


ri � ri��� ci� � ��	 � ri�ci�

We will make use of the following lemma, which in the form below is due to Vapnik [46, page
168].

Lemma 3.8 Let X be a set and S a system of sets on X , and P a probability measure on X .
For x � Xm and A � S, define �x�A� �� jx � Aj�m. If m � ���, then

Pm

�
x� sup

A�S
j�x�A�� P �A�j � �



� �P �m

�
xy� sup

A�S
j�x�A�� �y�A�j � ���



�

Let T� denote the threshold function at	: T��R � f�� �g, T��
� � � iff 
 � 	. For a class of
functionsF , T��F� � fT��f�� f � Fg.

Theorem 3.9 Consider a real valued function class F having fat shattering function bounded
above by the function afat � R � N which is continuous from the right. Fix 	 � R. If a learner
correctly classifies m independently generated examples z with h � T��f� � T��F� such that
erz�h� � � and � � min jf�xi� � 	j, then with confidence � � � the expected error of h is
bounded from above by

��m� k� �� �
�

m

�
k log

�

em

k

�
log���m� � log

�

m

�

��
�

where k � afat���
�.
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Proof : The proof will make use of lemma 3.8. First we will move to a double sample and
stratify byk. By the union bound, it thus suffices to show that

P �m�
�m�
k��

Jk� �
�mX
k��

P �m�Jk� � ����

where

Jk � fxy � �h � T��f� � T��F��Erx�h� � �� k � afat���
��

� � min jf�xi�� 	j�Ery�h� 	 m��m� k� ����g�

(The largest value ofk we need consider is�m, since we cannot shatter a greater number of
points fromxy.) It is sufficient if

P �m�Jk� � �

�m
� ���

Consider 
F � 
F� and note that by Lemma 3.7 the function afat��� also bounds fat
F���. The
probability distribution on
X � X � f�� �g is given byP on X with the second component
determined by the target value of the first component. Note that for a pointy � y to be
misclassified, it must have


f�
y� 	 maxf 
f�
x�� 
x � 
xg� � � 	�

so that

Jk �
n

x
y � �X � f�� �g��m � � 
f � 
F � r � maxf 
f�
x�� 
x � 
xg� � � 	 � r�

k � afat���
��
���f
y � 
y� 
f�
y� 	 	g

��� 	 m��m� k� ����
o

Replacing� by ��� in Lemma 3.6 we obtain

P �m�Jk� � ��� for

��m� k� �� �
�

m
�k log�
em�k� log���m� � log������� �

With this linking of � andm, the condition of Lemma 3.8 is satisfied. Appealling to this and
noting that the union bound givesP �m�

S�m
k�� Jk� �

P�m
k�� P

�m�Jk� we conclude the proof by
substituting for��.

A related result, that gives bounds on the misclassification probability of thresholded functions
in terms of an error estimate involving the margin of the corresponding real-valued functions,
is given in [9]. Using this result and bounds on the fat-shattering dimension of sigmoidal neural
networks, that paper also gives bounds on the generalization performance of these networks that
depend on the size of the parameters but are independent of the number of parameters.

11



4 Large Margin Hyperplanes

We will now consider a particular case of the results in the previous section, applicable to the
class of of linear threshold functions in Euclidean space. Vapnik and others [46, 48, 14, 16], [18,
page 140] have suggested that choosing the maximal margin hyperplane (i.e. the hyperplane
which maximises the minimal distance of points — assuming a correct classification can be
made) will improve the generalization of the resulting classifier. They give evidence to indicate
that the generalization performance is frequently significantly better than that predicted by the
VC dimension of the full class of linear threshold functions. In this section of the paper we will
show that indeed a large margin does help in this case, and we will give an explicit bound on
the generalization error in terms of the margin achieved on the training sample. We do this by
first bounding the appropriate fat-shattering function, and then applying theorem 3.9.

The margin also arises in the proof of the perceptron convergence theorem (see for example
[23, page 61–62], where an alternate motivation is given for a large margin: noise immunity).
The margin occurs even more explictly in the Winnow algorithms and their variants developed
by Littlestone and others [30, 31, 32]. The connection between these two uses has not yet been
explored.

Consider a hyperplane defined by�w� 	�, wherew is a weight vector and	 a threshold value.
LetX� be a subset of the Euclidean space that does not have a limit point on the hyperplane, so
that

min
x�X�

jhx� wi� 	j � ��

We say that the hyperplane is incanonical form with respect toX� if

min
x�X�

jhx� wi� 	j � ��

Let k�k denote the Euclidean norm. The maximal margin hyperplane is obtained by minimising
kwk subject to these constraints. The points inX� for which the minimum is attained are called
the support vectors of the maximal margin hyperplane.

The following theorem is the basis for our argument for the maximal margin analysis.

Theorem 4.1 (Vapnik [48]) Suppose X� is a subset of the input space contained in a ball of
radius R about some point. Consider the set of hyperplanes in canonical form with respect to
X� that satisfy kwk � A, and let F be the class of corresponding linear threshold functions,

f�x� w� � sgn�hx� wi� 	��

Then the restriction of F to the points in X� has VC dimension bounded by

minfR�A�� ng� ��

Our argument will also be in terms of Theorem 3.9, and to that end we need to bound the fat-
shattering dimension of the class of hyperplanes. We do this via an argument concerning the
level fat-shattering dimension, defined below.

Definition 4.2 Let F be a set of real valued functions. We say that a set of points X is level
�-shattered byF at levelr if it can be �-shattered when choosing the rx � r for all x � X . The

12



level fat shattering dimension lfatF of the set F is a function from the positive real numbers to
the integers which maps a value � to the size of the largest level �-shattered set, if this is finite
or infinity otherwise.

The level fat-shattering dimension is a scale sensitive version of a dimension introduced by
Vapnik [46]. The scale sensitive version was first introduced by Alonet al. [1].

Lemma 4.3 Let F be the set of linear functions with unit weight vectors, restricted to points in
a ball of radius R,

F � fx �� hw� xi� 	� kwk � �g � (1)

Then the level fat shattering function can be bounded from above by

lfatF��� � minfR����� ng� ��

Proof : If a set of pointsX � fxigi is to be level�-shattered there must be a valuer such that
each dichotomyb can be realised with a weight vectorwb and threshold	b such that

hwb� xii� 	b
� 	 r � � if bi � �
� r � � otherwise.

Let d � minx�X jhwb� xi � 	b � rj 	 �. Consider the hyperplane defined by�wb� 	
b
� �

�wb�d� 	b�d � r�d�. It is in canonical form with respect to the pointsX, satisfieskwbk �
kwb�dk � ��d and realises dichotomyb onX. Hence, the set of pointsX can be shattered by

a subset of canonical hyperplanes�wb� 	
b
� satisfyingkwbk � ��d � ���. The result follows

from Theorem 4.1.

Corollary 4.4 Let F be the set, defined in (1), of linear functions with unit weight vectors,
restricted to points in a ball of n dimensions of radius R about the origin and with thresholds
j	j � R. The fat shattering function of F can be bounded by

fatF��� � minf�R����� n� �g� ��

Proof : Supposem pointsx�� � � � � xm lying in a ball of radiusR about the origin are�-shattered
relative tor � �r�� � � � � rm�. Sincekwk � �, jhw� xii � 	j � �R, and sojrij � �R. From each
xi, i � �� � � � � m, we create an extended vectorxi �� �xi�� � � � � x

i
n� ri�

p
��. Sincejrij � �R,

kxik � p
�R. Let �wb� 	b� be the parameter vector of the hyperplane that realizes a dichotomy

b � f�� �gm. Setwb � �wb
�� � � � � w

b
n��

p
��.

We now show that the pointsxi, i � �� � � � � m are level�-shattered at level� by fwbgb�f���gm .
We have thathwb� xii� 	b � hwb� xii � 	b � ri �� t. But hwb� xii� 	b 	 ri � � if bi � �, and
hwb� xii� 	b � ri � � if bi � �. Thus

t 	 ri � � � ri � � if bi � �

t � ri � � � ri � � if bi � ��

Now kwbk �
p
�. Set �wb � wb�

p
�, and �xi �

p
�xi. Thenk �wbk � � and the points�xi,

i � �� � � � � m are level�-shattered at level� by f �wbgb�f���gm . Sincedim �xi � n � � and
k�xik � p

�
p
�R � �R, we have by Lemma 4.3 that fatF��� � minf�R�

��
� n� �g� �.
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Theorem 4.5 Suppose inputs are drawn independently according to a distribution whose sup-
port is contained in a ball in Rn centered at the origin, of radius R. If we succeed in correctly
classifying m such inputs by a canonical hyperplane with kwk � ��� and with j	j � R, then
with confidence �� � the generalization error will be bounded from above by

��m� �� �
�

m

�
k log

�

em

k

�
log���m� � log


m

�

�
�

where k � b���R����c.

Proof : Firstly note that we can restrict our consideration to the subclass ofF with j	j � R. If
there is more than one point to be�-shattered, then it is required to achieve a dichotomy with
different signs; that isb is neither all 0s nor all 1s. Since all of the points lie in the ball, to shatter
them the hyperplane must intersect the ball. Sincekwk � �, that meansj	j � R. So although
one may achieve a greater margin for the all-zero or all-one dichotomy by choosing a larger
value of	, all of the other dichotomies cannot achieve a larger�. Thus although the bound may
be weak in the special case of an all� or all � classification on the training set, it will still be
true.

Hence, we are now in a position to apply Theorem 3.9 with the value of	 given in the theorem
taken as�. Hence,

fatF���
� � b���R���� � �c � b���R����c�
since� � R. Substituting into the bound of Theorem 3.9 gives the required bound.

In section 6 we will give an analogous result as a special case of the more general framework
derived in section 5. Although the sample size bound for that result is weaker (by an additional
log�m� factor), it does allow one to cope with the slightly more general situation of estimating
the radius of the ball rather than knowing it in advance.

The fact that the bound in Theorem 4.5 does not depend on the dimension of the input space
is particularly important in the light of Vapnik’s ingenious construction of his support-vector
machines [16, 48]. This is a method of implementing quite complex decision rules (such as
those defined by polynomials or neural networks) in terms of linear hyperplanes in very many
dimensions. The clever part of the technique is the algorithm which can work in a dual space,
and which maximizes the margin on a training set. Thus Vapnik’s algorithm along with the
bound of Theorem 4.5 should allow gooda posteriori bounds on the generalization error in a
range of applications.

It is important to note that our explanation of the good performance of maximum margin hy-
perplanes is different to that given by Vapnik in [48, page 135]. Whilst alluding to the result of
theorem 4.1, the theorem he presents as the explanation is a bound on the expected generaliza-
tion error in terms of the number of support vectors. A small number of support vectors gives a
good bound. One can construct examples in which all four combinations of small/large margin
and few/many support vectors occur. Thus neither explanation is the only one. In the terminol-
ogy of the next section, the margin and (the reciprocal of) the number of support vectors are
both “luckiness” functions, and either could be used to determine bounds on performance.
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5 Luckiness: A General Framework for Decomposing Classes

The standard PAC analysis gives bounds on generalization error that are uniform over the hy-
pothesis class. Decomposing the hypothesis class, as described in Section 2, allows us to bias
our generalization error bounds in favour of certain target functions and distributions: those
for which some hypothesis low in the hierarchy is an accurate approximation. The results of
section 4 show that it is possible to decompose the hypothesis class on the basis of the observed
data in some cases: there we did it in terms of the margin attained. In this section, we introduce
a more general framework which subsumes the standard PAC model, the framework described
in Section 2 and can recover (in a slightly weaker form) the results of Section 4 as a special
case. This more general decomposition of the hypothesis class based on the sample allows us
to bias our generalization error bounds in favour of more general classes of target functions and
distributions, which might correspond to more realistic assumptions about practical learning
problems.

It seems that in order to allow the decomposition of the hypothesis class to depend on the sam-
ple, we need to make better use of the information provided by the sample. Both the standard
PAC analysis and structural risk minimisation with a fixed decomposition of the hypothesis
class effectively discard the training examples, and only make use of the function Erz defined
on the hypothesis class that is induced by the training examples. The additional information we
exploit in the case of sample-based decompositions of the hypothesis class is encapsulated in a
luckiness function.

The main idea is to fix in advance some assumption about the target function and distribution,
and encode this assumption in a real-valued function defined on the space of training samples
and hypotheses. The value of the function indicates the extent to which the assumption is
satisfied for that sample and hypothesis. We call this mapping a luckiness function, since it
reflects how fortunate we are that our assumption is satisfied. That is, we make use of a function

L � Xm �H � R
� �

which measures the luckiness of a particular hypothesis with respect to the training examples.
Sometimes it is convenient to express this relationship in an inverted way, as an unluckiness
function,

U � Xm �H � R
� �

It turns out that only the ordering that the luckiness or unluckiness functions impose on hy-
potheses is important. We define thelevel of a functionh � H relative toL andx by the
function


�x� h� � jfb � f�� �gm � �g � H� g�x� � b� L�x� g� 	 L�x� h�gj�
or


�x� h� � jfb � f�� �gm � �g � H� g�x� � b� U�x� g� � U�x� h�gj�
Whether
�x� h� is defined in terms ofL or U is a matter of convenience; the quantity
�x� h�
itself plays the central role in what follows. Ifx�y � Xm, we denote byxy their concatenation
�x�� � � � � xm� y�� � � � � ym�.
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5.1 Examples

Example 5.1 Consider the hierarchy of classes introduced in Section 2 and define

U�x� h� � minfd � h � Hdg�

Then it follows from Sauer’s lemma that for any x we can bound 
�x� h� by


�x� h� �

em
d

�d
�

where d � U�x� h�. Notice also that for any y � Xm,


�xy� h� �
�
�em

d

�d

�

The last observation is something that will prove useful later when we investigate how we can
use luckiness on a sample to infer luckiness on a subsequent sample.

We show in Section 6 that the hyperplane margin of Section 5 is a luckiness function which sat-
isfies the technical restrictions we introduce below. We do this in fact in terms of the following
unluckiness function, defined formally here for convenience later on.

Definition 5.2 If h is a linear threshold function with separating hyperplane defined by �w� 	�,
and �w� 	� is in canonical form with respect to an m-sample x, then define

U�x� h� � max
��i�m

kxik�kwk��

Finally, we give a separate unluckiness function for the maximal margin hyperplane example. In
practical experiments it is frequently observed that the number of support vectors is significantly
smaller than the full training sample. Vapnik [48, Theorem 5.2] gives a bound on the expected
generalization error in terms of the number of support vectors as well as giving examples of
classifiers [48, Table 5.2] for which the number of support vectors was very much less than
the number of training examples. We will call this unluckiness function the support vectors’
unluckiness function.

Definition 5.3 If h is a linear threshold function with separating hyperplane defined by �w� 	�,
and �w� 	� is the maximal margin hyperplane in canonical form with respect to an m-sample x,
then define

U�x� h� � jfx � x � jhx� wi� 	j � �gj�
that is U is the number of support vectors of the hyperplane.

5.2 Probable Smoothness of Luckiness Functions

We now introduce a technical restriction on luckiness functions required for our theorem.
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Definition 5.4 An 
-subsequence of a vector x is a vector x� obtained from x by deleting a
fraction of at most 
 coordinates. We will also write x� �� x. For a partitioned vector xy, we
write x�y� �� xy.

A luckiness function L�x� h� defined on a function class H is probably smoothwith respect to
functions ��m�L� �� and ��m�L� ��, if, for all targets t in H and for every distribution P ,

P �m fxy � �h � H�Erx�h� � �� �x�y� �	 xy� 
�x
�
y
�� h� � ��m�L�x� h�� ��g � ��

where � � ��m�L�x� h�� ��.

The definition for probably smooth unluckiness is identical except thatL’s are replaced byU ’s.
The intuition behind this rather arcane definition is that it captures when the luckiness can be
estimated from the first half of the sample with high confidence. In particular, we need to ensure
that few dichotomies are luckier thanh on the double sample. That is, for a probably smooth
luckiness function, if an hypothesish has luckinessL on the firstm points, we know that, with
high confidence, for most (at least a proportion��m�L� ��) of the points in a double sample, the
growth function for the class of functions that are at least as lucky ash is small (no more than
��m�L� ��).

Theorem 5.5 Suppose pd, d � �� � � � � �m, are positive numbers satisfying
P�m

i�� pi � �, L is
a luckiness function for a function class H that is probably smooth with respect to functions
� and �, m � N and � � � � ���. For any target function t � H and any distribution P ,
with probability �� � over m independent examples x chosen according to P , if for any i � N

a learner finds an hypothesis h in H with Erx�h� � � and ��m�L�x� h�� �� � �i��, then the
generalization error of h satisfies erP �h� � ��m� i� �� where

��m� i� �� �
�

m

�
i� � � log

�

pi�

�
� ���m� L�x� h�� pi���� log �m�

Proof : By Lemma 3.8,

Pm
�
x � �h � H� �i � N �Erx�h� � �� ��m�L�x� h�� �� � �i��� erP �h� � ��m� i� ��

�
� �P �m

�
xy � �h � H� �i � N �Erx�h� � �� ��m�L�x� h�� �� � �i���Ery�h� � m

�
��m� i� ��

�
�

providedm 	 ����m� i� ��, which follows from the definition of��m� i� �� and the fact that
� � ���. Hence it suffices to show thatP �m�Ji� � �i � pi��� for eachi � N , whereJi is the
event �

xy � �h � H�Erx�h� � �� ��m�L�x� h�� �� � �i���Ery�h� 	 m
�
��m� i� ��

�
�

Let S be the event

fxy � �h � H�Erx�h� � �� �x�y� �	 xy� 
�x
�
y
�� h� � ��m�L�x� h�� ��g

with � � ��m�Li� �i���. It follows that

P �m�Ji� � P �m�Ji � S� � P �m�Ji � �S�

� �i�� � P �m�Ji � �S��
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It suffices then to show thatP �m�Ji � �S� � �i��. But Ji � �S is a subset of

R � fxy� �h � H�Erx�h� � �� �x�y� �	 xy�


�x�y�� h� � �i���Ery��h� 	 m
�
��m� i� ��� �jyj � jy�j�� �

wherejy�j denotes the length of the sequencey
�.

Now, if we consider the uniform distributionU on the group of permutations onf�� � � � � �mg
that swap elementsi andi�m, we have

P �m�R� � sup
xy

U f� � �xy�
 � Rg �

wherez
 � �z
���� � � � � z
��m�� for z � X�m. Fix xy � X�m. For a subsequencex�y� �	

xy, we let�x�y��
 denote the corresponding subsequence of the permuted version ofxy (and
similarly for �x��
 and�y��
). Then

U f�� �xy�
 � Rg � U
�
�� �x�y� �	 xy� �h � H� 
��x�y��
� h� � �i���Er�x����h� � ��

Er�y����h� 	 m
�
��m� i� ��� �jyj � jy�j��

�
X

x�y���xy

U
�
�� �h � H� 
��x�y��
� h� � �i���Er�x����h� � ��

Er�y����h� 	 m
�
��m� i� ��� �jyj � jy�j�� �

For a fixed subsequencex�y� �	 xy, define the event inside the last sum asA. We can partition
the group of permutations into a number of equivalence classes, so that, for alli, within each
class all permutations mapi to a fixed value unlessx�y� contains bothxi andyi. Clearly, all
equivalence classes have equal probability, so we have

U�A� �
X
C

Pr�AjC� Pr�C�

� sup
C

Pr�AjC��

where the sum and supremum are over equivalence classesC. But within an equivalence class,
�x�y��
 is a permutation ofx�y�, so we can write

Pr�AjC� � Pr
��h � H� 
��x�y��
� h� � �i���Er�x����h� � ��

Er�y����h� 	 m
�
��m� i� ��� �jyj � jy�j� �� C	

� sup

�C

��Hj�x��y���
�� sup

h
Pr
�

Er�x����h� � ��Er�y����h� 	 m
�
��m� i� ��

��C	� (2)

where the second supremum is over the subset ofH for which 
��x�y��
� h� � �i��. Clearly,��Hj�x��y���
�� � �i���

and the probability in (2) is no more than

��m��m�i�������	m�
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Combining these results, we have

P �m�Ji � �S� �
�

�m

��m

�
�i����m����m�i�����	m�

and this is no more than�i�� � pi��� if

m

�
��m� i� �� 	 ��m log��m� � i � � � ��m� log

�

pi�
�

The theorem follows.

6 Examples of Probably Smooth Luckiness Functions

In this section, we consider four examples of luckiness functions and show that they are proba-
bly smooth. The first example (Example 5.1) is the simplest; in this case luckiness depends only
on the hypothesish and is independent of the examplesx. In the second example, luckiness
depends only on the examples, and is independent of the hypothesis. The third example al-
lows us to predict the generalization performance of the maximal margin classifier. In this case,
luckiness clearly depends on both the examples and the hypothesis. (This is the only example
we present here where the luckiness function isboth a function of the data and the hypothesis.)
The fourth example concerns the VC-dimension of a class of functions when restricted to the
particular sample available.

First Example

If we consider Example 5.1, the unluckiness function is clearly probably smooth if we choose
��m�U�x� h�� �� � ��em�U�U � and��m�U� �� � � for all m and�. The bound on generaliza-
tion error that we obtain from Theorem 5.5 is almost identical to that given in Theorem 2.1.

Second Example

The second example we consider involves examples lying on hyperplanes.

Definition 6.1 Define the unluckiness function U�x� h� for a linear threshold function h as
U�x� h� � dim spanfxg� the dimension of the vector space spanned by the vectors x.

Proposition 6.2 LetH be the class of linear threshold functions defined on Rd . The unluckiness
function of Definition 6.1 is probably smooth with respect to ��m�U� �� � ��em�U�U and

��m�U� �� �
�

m

�
U ln

�
�em

U

�
� ln

�
�d

�

��
�
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Proof : The recognition of ak dimensional subspace is a learning problem for the indicator
functionsHk of the subspaces. These have VC dimensionk. Hence, applying the hierarchical
approach of Theorem 2.1 takingpk � ��d, we obtain the given error bound for the number of
examples in the second half of the sequence lying outside the subspace. Hence, with probability
� � � there will be a�� � ��-subsequence of points all lying in the given subspace. For this
sequence the growth function is bounded by��m�U� ��.

The above example will be useful if we have a distribution which is highly concentrated on
the subspace with only a small probability of points lying outside it. We conjecture that it is
possible to relax the assumption that the probability distribution is concentrated exactly on the
subspace, to take advantage of a situation where it is concentrated around the subspace and the
classifications are compatible with a perpendicular projection onto the space. This will also
make use of both the data and the classification to decide the luckiness.

Third Example

We are now in a position to state the result concerning maximal margin hyperplanes.

Proposition 6.3 The unluckiness function of Definition 5.2 is probably smooth with ��m�U� �� �
��em���U���U � and

��m�U� �� �
�

�m

�
k log

�

em

k

�
log���m� � log��m� �� � � log

�
�

�

��
�

where k � b����Uc.

Proof : By the definition of the unluckiness functionU , we have that the maximal margin hy-
perplane has margin� satisfying,

U � R�����

where
R � max

��i�m
kxik�

The proof works by allowing two sets of points to be excluded from the second half of the
sample, hence making up the value of�. By ignoring these points with probability� � � the
remaining points will be in the ball of radiusR about the origin and will be correctly classified
by the maximal margin hyperplane with a margin of���. Provided this is the case then the
function��m�U� �� gives a bound on the growth function on the double sample of hyperplanes
with larger margins. Hence, it remains to show that with probability� � � there exists a frac-
tion of ��m�U� �� points of the double sample whose removal leaves a subsequence of points
satisfying the above conditions. First consider the class

H � ff�j� � R
�g�

where

f��x� �

�
�� if kxk � ��
�� otherwise�
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The class has VC dimension 1 and so by the permutation argument with probability�� ��� at
most a fraction�� of the second half of the sample are outside the ballB centered at the origin
containing with radiusR, where

�� �
�

m

�
log��m� �� � log

�

�

�
�

since the growth functionBH�m� � m��. We now consider the permutation argument applied
to the points of the double sample contained inB to estimate how many are closer to the
hyperplane than��� or are incorrectly classified. This involves an application of Lemma 3.6
with ��� substituted for� and using the folding argument introduced just before that Lemma.
We have by Corollary 4.4 that

fatF��� � minf�R����� n� �g� ��

whereF is the set of linear threshold functions with unit weight vector restricted to points in a
ball of radiusR about the origin. Hence, with probability� � ��� at most a fraction�� of the
second half of the sample that are inB are either not correctly classified or within a margin of
��� of the hyperplane, where

�� �
�

m

�
k log


em

k
log���m� � log

�

�

�
�

for k � b����R����c � b����Uc. The result follows by adding the numbers of excluded
points��m and��m and expressing the result as a fraction of the double sample as required.

Combining the results of Theorem 5.5 and Proposition 6.3 gives the following corollary.

Corollary 6.4 Suppose pd, for d � �� � � � � �m, are positive numbers satisfying
P�m

d�� pd � �.
Suppose � � � � ���, t � H , and P is a probability distribution on X . Then with probability
� � � over m independent examples x chosen according to P , if a learner finds an hypothesis
h that satisfies Erx�h� � �, then the generalization error of h is no more than

��m�U� �� �
�

m

��
�U log

�em

�U

�
� � log

p
��m log

�

pi�
�

�

�
b����Uc log

�

em

b����Uc
�
log���m� � log���m� 
�

�
log �m

�

where U � U�x� h� for the unluckiness function of Definition 5.2.

If we compare this corollary with Theorem 4.5, there is an extralog�m� factor that arises from
the fact that we have to consider all possible permutations of the omitted� subsequence in the
general proof, whereas that is not necessary in the direct argument based on fat-shattering. The
additional generality obtained here is that the support of the probability distribution does not
need to be known, and even if it is we may derive advantage from observing points with small
norms, hence giving a better value ofU � R���� than would be obtained in Theorem 4.5 where
thea priori bound onR must be used.
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Vapnik has used precisely the expression for this unluckiness function (given in Definition 5.2)
as an estimate of the effective VC dimension of the Support Vector Machine [48, p.139]. The
functional obtained is used to locate the best suited complexity class among different polyno-
mial kernel functions in the Support Vector Machine [48, Table 5.6]. The result above shows
that this strategy is well-founded by giving a bound on the generalization error in terms of this
quantity.

It is interesting to note that the support vectors’ unluckiness function of Definition 5.3 relates to
the same classifiers but one which for a given same sample defines a different ordering on the
functions in the class in the sense that a large margin can occur with a large number of support
vectors, while a small margin can be forced by a small number of support vectors.

We will omit the proof of the probable smoothness of the support vectors’ unluckiness function
since a more direct bound on the generalization error can be obtained using the results of Floyd
and Warmuth [19]. Since the set of support vectors is a compression scheme, Theorem 5.1
of [19] can be rephrased as follows.

Let MMH be the function that returns the maximal margin hyperplane consistent with a la-
belled sample. Note that applying the function MMH to the labelled support vectors returns the
maximal margin hyperplane of which they are the support vectors.

Theorem 6.5 (Littlestone and Warmuth [33]) Let D be any probability distribution on a do-
main X , c be any concept on X . Then the probability that m 	 d examples drawn indepen-
dently at random according to D contain a subset of at most d examples that map via MMH to
a hypothesis that is both consistent with all m examples and has error larger than � is at most

dX
i��

�
m

i

�
��� ��m�i�

The theorem implies that the generalization error of a maximal margin hyperplane withd sup-
port vectors among a sample of sizem can with confidence�� � be bounded by

�

m� d



d log

em

d
� log

m

�

�
�

where we have allowed different numbers of support vectors by applying standard SRM to the
bounds for differentd. Note that the valued, that is the unluckiness of Definition 5.3, plays the
role of the VC dimension in the bound.

Using a similar technique to that of the above theorem it is possible to show that the support
vectors’ unluckiness function is indeed probably smooth with respect to

��m� d� �� �
�

�m

�
d log

�em

d
� log

�

�

�

and ��m� d� �� �

�
�em

d

�d

�

However, the resulting bound on the generalization error involves an extra log factor.

22



Fourth Example

The final example is more generic in nature as we do not indicate how the luckiness function
might be computed or estimated. This might vary according to the particular representation. If
H is a class of functions andx � Xm, we writeHjx � fhjx� h � Hg.
Definition 6.6 Consider a hypothesis class H and define the unluckiness function U�x� h� for
a function h � H as

U�x� h� � VCdim�Hjx��

The motivation for this example can be found in a number of different sources.

Recently Sontag [44] showed the following result for smoothly parametrized classes of func-
tions: Under mild conditions, if all sets in general position of size equal to the VC dimension
of the class are shattered, then the VC dimension is bounded by half the number of parameters.
This implies that even if the VC dimension is super-linear in the number of the parameters, it
will not be so on all sets of points. In fact the paper shows that there are nonempty open sets
of samples which cannot be shattered. Hence, though we might consider a hypothesis space
such as a multi-layer sigmoidal neural network whose VC dimension can be quadratic [27] in
the number of parameters, it is possible that the VC dimension when restricted to a particular
sample is only linear in the number of parameters. However there are as yet no learning results
of the standard kind that take advantage of this result (to get appropriately small sample size
bounds) when the conditions of his theorem hold. The above luckiness function does take ad-
vantage of Sontag’s result implicitly in the sense that it can detect, whether the situation which
Sontag predicts will sometimes occur, has in fact occurred. Further, it can then exploit this to
give better bounds on generalization error.

A further motivation can be seen from the distribution dependent learning described in [5],
where it is shown that classes which have infinite VC dimension may still be learnable provided
that the distribution is sufficiently concentrated on regions of the input space where the set of
hypotheses has low VC dimension. The problem with that analysis is that there is no apparent
way of checkinga priori whether the distribution is concentrated in this way. The probable
smoothness of the unluckiness function of Definition 6.6 shows that we can effectively esti-
mate the distribution from the sample and learn successfully if it witnesses a region of low VC
dimension.

In addition to the above two motivations, the approach mirrors closely that taken in a recent
paper by Lugosi and Pint´er [36]. They divide the original sample in two and use the first part to
generate a covering set of functions for the hypothesis class in a metric derived from the function
values on these points. They then choose the function from this cover which minimises the
empirical error on the second half of the sample. They bound the error of the function in terms
of the size of the cover derived on the first set of points. However, the size of this cover can be
bounded by the VC dimension of the set of hypotheses when restricted to these points. Hence,
the generalization is effectively bounded in terms of a VC-dimension estimate derived from the
sample. The bound they obtain is difficult to compare directly with the one given below, since it
is expressed in terms of theexpected size of the cover. In addition, their estimator must build a
(potentially very large) empirical cover of the function class. Lugosi and Nobel [35] have more
recently extended this work in a number of ways, in particular to general regression problems.
However their bounds are all still in terms of expected size of covers.
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We begin with a technical lemma which analyses the probabilities under the swapping group of
permutations used in the symmetrisation argument. The group� consists of all�m permutations
which exchange corresponding points in the first and second halves of the sample, i.e.xj � yj
for j � f�� � � � � mg.

Lemma 6.7 Let � be the swapping group of permutations on a �m sample of points xy. Con-
sider any fixed set z�� � � � � zd of the points. For �k � d the probability Pd�k under the uniform
distribution over permutations that exactly k of the points z�� � � � � zd are in the first half of the
sample is bounded by

Pd�k �
�
d

k

�
���d�

Proof : The result is immediate if no pair ofzi’s is in corresponding positions in opposite halves
of the sample, since the expression counts the fraction of permutations which leave exactlyk
points in the first half. The rest of the proof is concerned with showing that when pairs ofzi’s
do occur in opposite positions the probability is reduced. LetP �l

d�k be the probability whenl
pairs are matched in this way. In this case, whatever the permutation,l points are in the first
half, and to make up the number tok a furtherk� l trials must succeed out ofd� �l, each trial
having probability���. Hence

P �l
d�k �

�
d� �l

k � l

�
���d��l�

Note that

P
��l���
d�k �

�
d� �l � �

k � l � �

�
���d��l��

� g�k� l�P �l
d�k�

where

g�k� l� �
��k � l��d� k � l�

�d� �l��d� �l � ��
�

The result will follow if we can show thatg�k� l� � � for all relevant values ofk andl. The
functiong�k� l� attains its maximum value fork � d�� and since it is a quadratic function ofk
with negative coefficient of the square term, its maximum in the range of interest is strictly less
than

g�d��� l� �
��d� �l���d� �l�

��d� �l��d� �l � ��
�

Hence, in the range of interestg�k� l� � �, if

��d� �l���d� �l� � ��d� �l��d� �l � ��


 d� � �d� �
l 	 �


 d 	 ��

Hence, ford 	 � we have for alll that

P �l
d�k � P �

d�k �

�
d

k

�
���d�
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and the result follows. Ford � � a problem could only arise for the case whenl � � in view
of the�
l in the above equation, i.e. the case when a single linked pair is introduced. Hence,
one point is automatically in the first half. Since�k � d � �, we need only considerk � � and
d � �� 
. By the equation aboved � � will be the worst case. It is, however, easily verified that
P �
��� � P �

��� as required.

Proposition 6.8 The unluckiness function of Definition 6.6 is probably smooth with respect to
��m�U� �� and ��m�U� �� � �, where

��m�U� �� �

�
�em


U

��U

�

and


 � ���


�
� �

�

U
ln

�

�

�
�

Proof : Let 
 � 
�U� �� be as in the proposition statement. The result will follow if we can
show that with high probability the ratio between the VC dimensions obtained by restrictingH
to the single and double samples is not greater than
. Formally expressed it is sufficient to
show that

P �m
�
xy � 
�VCdim�Hjx�� ��VCdim�Hjx� � VCdim�Hjxy�

� � ��

since� gives a bound on the growth function for a set of functions with VC dimension
U ,
whereU is the VC dimension measured on the first half of the sample. We use the symmetrisa-
tion argument to bound the given probability. Let the VC dimension on the double sample bed
and consider pointsz�� � � � � zd � xy which are shattered byH. We stratify the bound by con-
sidering the case whenk of thesed points are on the left hand side under the given permutation.
By Lemma 6.7 the probabilityPd�k that this occurs is bounded by

Pd�k �
�
d

k

�
���d�

providedk � �d. Havingk points in the first half will not violate the condition if


�U� ��U 	 d�

for all U 	 k. This is because withk of the pointsz�� � � � � zd on the left hand side we must have

U � VCdim�Hjx� 	 k�

Since
�U� ��U is monotonically increasing we can bound the probability of the condition being
violated by summing the probabilitiesPd�k for k such that
�k� ��k � d. Let U satisfy the
equation
�U� ��U � d � 
U . Hence, since�U � d, it suffices to show that

L �

bUcX
k��

Pd�k �
bUcX
k��

�
d

i

�
���d � ��
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But we can boundL as follows:

L � �

�d

�
ed

U

�U

� �e
�U

��U
�

Hence,L � �, provided


�U� �� � 
 	 log�
e� �
�

U
log

�

�
�

Using Lemma 3.2 from [42] withc � �, the above holds provided


�ln �� ��e� 	 �

U
ln

�

�
� ��

and this holds when


�U� �� � ���


�
� �

�

U
ln

�

�

�
�

as required.

Corollary 6.9 Suppose � � � � ���, t � H , and P is a probability distribution on X . Then
with probability �� � over m independent examples x chosen according to P , if a learner finds
an hypothesis h that satisfies Erx�h� � �, and in addition bounds the quantity VCdim�Hjx� by
U , then the generalization error of h is no more than

��m�U� �� �
�

m

�
���


�
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�

�
log

�em

���
U
� log


m
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Proof : We apply the proposition together with Theorem 5.5, choosingpi � ��m, for i �
�� � � � � �m.

Observe that this corollary could be interpreted as a result about “effective VC-dimension.” A
similar notion was introduced in [22], but the precise definition was not given there. The above
corollary is the first result along these lines of which we are aware, that gives a theoretical per-
formance bound in terms of quantities that can be determined empirically (albeit at a potentially
large computational cost).

7 Conclusions

The aim of this paper has been to show that structural risk minimisation can be performed
by specifying in advance a more abstract stratification of the overall hypothesis class. In this
new inductive framework the subclass of the resulting hypothesis depends on its relation to
the observed data and not just a predefined partition of the functions. The luckiness function
of the data and hypothesis captures the stratification implicit in the approach, while probable
smoothness is the property required to ensure that the ‘luckiness’ observed on the sample can
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be used to reliably infer ‘lucky’ generalization. We have shown that Vapnik’s maximal margin
hyperplane algorithm is an example of implementing this strategy where the luckiness function
is the ratio of the maximum size of the input vectors to the maximal margin observed.

Since lower bounds exist ona priori estimates of generalization derived from VC dimension
bounds, the better generalization bounds must be a result of a non-random relation between
the probability distribution and the target hypothesis. This is most evident in the maximal
margin hyperplane case where the distribution must be concentrated away from the separating
hyperplane.

There are many different avenues that might be pursued through the application of the ideas in
practical learning algorithms, since it allows practitioners to take advantage of their intuitions
about structure that might be present in particular problems. By encapsulating these ideas in an
appropriate luckiness function, they can potentially derive algorithms and generalization bounds
significantly better than the normal worst case PAC estimates, if their intuitions are correct.

From the analytic point of view many questions are raised by the paper. Corresponding lower
bounds would help place the theory on a tighter footing and might help resolve the role of
the additionallog�m� factor introduced by the luckiness framework. Alternatively, it may be
possible to either refine the proof or the definition of probable smoothness to eliminate this
apparent looseness in the bound.

Another exciting prospect from a theoretical angle is the possibility of linking this work with
other a posteriori bounds on generalization. The most notable example of such bounds is that
provided by the Bayesian approach, where the volume of weight space consistent with the
hypothesis is treated in much the same manner as a luckiness function (see for example [39,
40]). Indeed, the size of the maximal margin can be viewed as a way of bounding from below
the volume of weight space consistent with the hyperplane classification. Hence, other weight
space volume estimators could be considered though it seems unlikely that the true volume
itself would be probably smooth since accurate estimation of the true volume requires too many
sample points. If Bayesian estimates could be placed in this framework the role of the prior
distribution, which has been a source of so much criticism of the approach, could be given a
more transparent status, while the bounds themselves would become distribution independent.
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